Metadata of the chapter that will be visualized online

Chapter Title	Classification and Differential A	Analysis of Groin Pain Syndrome
Copyright Year	2017	
Copyright Holder	Springer International Publishin	<u> </u>
Corresponding Author	Family Name	Bisciotti
	Particle	
	Given Name	Gian Nicola
	Suffix	
	Division	
	Organization/University	Qatar Sport Medicine and Orthopaedic Hospital, FIFA Center of Excellence
	Address	Doha, Qatar
	Email	bisciotti@libero.it
Author	Family Name	Volpi
	Particle	
	Given Name	Piero
	Suffix	
	Division	
	Organization/University	Istituto Clinico Humanitas
	Address	Rozzano, Milano, Italy
	Division	
	Organization/University	Responsabile Settore Medico F.C. Internazionale
	Address	Milano, Italy

Author's Proof

Abstract

It is never banal, before tackling a subject so controversial as the groin pain (GP), to remember that with this term—as on the other hand also as it regards all the other terms as athletic groin, groin disruption, osteitis pubis, etc. expressing the same kind of symptoms—we mean only the description of a symptom or better of a cohort of symptoms that the patient complains at the level of the pubic area. For this reason, we should be extremely careful not to identify the term GP (or any other term up to now considered as equivalent) and diagnosis. In fact, the GP has a multifactorial pathogenesis where often different clinical frameworks overlap, making sometimes the diagnosis a real diagnostic challenge. Objectively, it must be acknowledged that the anatomical complexity of the pubic region certainly does not facilitate the adoption of a clear nosological terminology. The multiple anatomical structures that may be involved are so numerous as to preclude, in fact, a comprehensive nomenclature [1], unless, as already pointed out, the term of GP is intended only as a description of a cohort of symptoms and not misunderstood with the diagnosis itself. Indeed, unfortunately, this simple and basic concept seems to be often overlooked in the specific literature. This lack of clarity uniqueness concerning terminology can be explained, but not of course justified, by the fact that since the symptoms reported by the patient can result from skeletal muscular, gastrointestinal, urogenital, neurological and gynaecological problems [2, 3], the risk for the clinician to use different terminologies is high. The fact is that the terminology is often confusing and sometimes dichotomous, a situation that creates a lot of difficulties of interpretation. Furthermore, there are objectively considerable difficulties in finding and interpreting the results reported by various studies. In this regard, a paradigmatic example is provided by Serner et al. [4] that in their systematic review emphasizes the need to standardize the terminology used in order to facilitate the comparison of results derived from the different studies present in literature. Not surprisingly, to reinforce this need, in their review, the authors included 72 studies, in which they found 33 different diagnostic terms. Recently, the "Agreement Meeting on Definitions and Terminology on Groin Pain in Athletes" held in Doha (Q) in November 2014 [5] was aimed to standardize the clinical terms used for GP.

AUTHOR QUERIES

Q1 Please check and confirm if the affiliations are presented correctly.

2

3

5\U2

6

7

8

9 10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

Classification and Differential Analysis of Groin Pain Syndrome 1

27

28

29

30

32

33

34

35

36

37

38

39

42

43

44

46

47

48

49

50

51

52

53

54

55

56

Gian Nicola Bisciotti and Piero Volpi

1.1 Introduction

It is never banal, before tackling a subject so controversial as the groin pain (GP), to remember that with this term—as on the other hand also as it regards all the other terms as athletic groin, groin disruption, osteitis pubis, etc. expressing the same kind of symptoms—we mean only the description of a symptom or better of a cohort of symptoms that the patient complains at the level of the pubic area. For this reason, we should be extremely careful not to identify the term GP (or any other term up to now considered as equivalent) and diagnosis. In fact, the GP has a multifactorial pathogenesis where often different clinical frameworks overlap, making sometimes the diagnosis a real diagnostic challenge. Objectively, it must be acknowledged that the anatomical complexity of the pubic region certainly does not facilitate the adoption of a clear nosological terminology. The multiple anatomical structures that may be involved are so numer-

G.N. Bisciotti (⊠)

Qatar Sport Medicine and Orthopaedic Hospital, FIFA Center of Excellence, Doha, Qatar e-mail: bisciotti@libero.it

> P. Volpi Istituto Clinico Humanitas, Rozzano, Milano, Italy Responsabile Settore Medico F.C. Internazionale, Milano, Italy

ous as to preclude, in fact, a comprehensive nomenclature [1], unless, as already pointed out, the term of GP is intended only as a description of a cohort of symptoms and not misunderstood with the diagnosis itself. Indeed, unfortunately, this simple and basic concept seems to be often overlooked in the specific literature. This lack of clarity uniqueness concerning terminology can be explained, but not of course justified, by the fact that since the symptoms reported by the patient can result from skeletal muscular, gastrointestinal, urogenital, neurological and gynaecological problems [2, 3], the risk for the clinician to use different terminologies is high. The fact is that the terminology is often confusing and sometimes dichotomous, a situation that creates a lot of difficulties of interpretation. Furthermore, there are objectively considerable difficulties in finding and interpreting the results reported by various studies. In this regard, a paradigmatic example is provided by Serner et al. [4] that in their systematic review emphasizes the need to standardize the terminology used in order to facilitate the comparison of results derived from the different studies present in literature. Not surprisingly, to reinforce this need, in their review, the authors included 72 studies, in which they found 33 different diagnostic terms. Recently, the "Agreement Meeting on Definitions Terminology on Groin Pain in Athletes" held in Doha (Q) in November 2014 [5] was aimed to standardize the clinical terms used for GP.

1.2 The Groin Pain Syndrome Italian Consensus Classification

The first Groin Pain Italian Consensus held in Milan February 5, 2016, was an invitation consensus conference attended by orthopaedics, sports physicians, general surgeons, radiologists, physiatrists, sport physiologists, physiotherapists and physical trainers that was aimed to approve three separate documents concerning the GP:

- 1. Diagnostic taxonomy document consensus
- 2. Clinical semeiotics document consensus
- 3. Imaging document consensus

Each document was first presented by a facilitator; the presentation was then followed by a plenary discussion directed by a chairman. After each discussion followed a vote. The first document has required 15 different discussions and the same number of votes, while the second and the third document required six discussions and votes. During the discussions, the document was eventually changed and was then voted only the final version. All votes are passed unanimously.

1.2.1 Summary of the First Document: Diagnostic Taxonomy Document Consensus

The first vote concerned the use of the term groin pain syndrome (GPS). The use of the term "syndrome" is justified by the frequent overlapping of different clinical frameworks and by the possible cause-effect interaction that characterize a well-defined GP clinical framework [6–8]. Obviously, the term GPS is an "umbrella term" that must necessarily be complemented by the clinical framework description. You may then, for example, have a GPS

caused by adductor tendinopathy, or from inguinal hernia, or by a combination of these as of other pathologies. Therefore, it is our opinion that only adopting a comprehensive descriptive term, as GPS, and associating it with the clinical and taxonomic description of the disease, or diseases, responsible for the symptomatology reported by the patient, we can arrive to have a clear and rational identification of the problem. Then it was then proposed and approved the following definition of GPS:

Every clinical situation complained by the patient at the level of the inguinal-pubic area that affects the sporting activities and/or interferes negatively in activities of daily living (ADL) and requiring medical attention

Furthermore, based on the synthesis of different studies [5, 9–17], we propose that the clinical frameworks that can be the cause of occurrence of GPS can be subdivided into 11 different categories as follows:

1. Articular causes

	- Curing Curing Car	
(a)	Acetabular labrum tear	115
(b)	Femoroacetabular impingement(I)	116
(c)	HALTAR lesion(II)	117
(d)	Hip osteoarthritis	118
(e)	Intra-articular loose bodies	119

- (f) Hip instability 120
- (g) Adhesive capsulitis(h) Legg-Calvé-Perthes disease and its 122
- outcomes

 (i) Dysplasia and its outcomes
- (j) Epiphysiolysis and its outcomes
- (k) Avascular necrosis of the femoral head
- (1) Sacroiliac joint disorders
- (m) Lumbar column disorders

(n) Synovitis

Notes:

- (I) Cam-Fai, Pincer-Fai, subspine impingement (or AIIS, anterior inferior iliac spine impingement).
- (II) Hip anterosuperior labral tear with avulsion of the rectus femoris.

Author's Proof

1 Classification and Differential Analysis of Groin Pain Syndrome

136	2.	Viso	ceral causes	(m) Bursitis ^(II)	179
137		(a)	Inguinal hernia ^(I)	(n)	Weakness of the inguinal canal wall(III)	180
138		(b)	Other types of abdominal hernia	No	tes:	181
139		(c)	Intestinal diseases	(I)	Iliopsoas impingement with the medial	182
140		Note	e:		portion of the acetabular rim.	183
141		(I)	Concerning inguinal hernia, it is recom-	(II)	Substantially concerning of the ileo-pec-	184
142			mended to adopt the classification pro-		tineal bursa and the greater trochanter	185
143			posed by the European Hernia Society.		sero-mucous bursa.	186
144	3.	Bon	ne causes	(III)	It's important to underline the four most	<u> 487</u>
145		(a)	Fractures and their outcomes		important clinical signs of the inguinal	188
146		(b)	Stress fractures ^(I)		canal wall weakness: tenderness to the	189
147		(c)	Avulsion fractures ^(II)		exploration of the inguinal canal, tender-	190
148		(d)	Iliac crest contusion (hip pointers)(III)		ness on palpation at the level of the pubic	191
149		Note	es:		tubercle, superficial inguinal ring dilata-	192
150		(I)	Substantially concerning the pubic branch		tion and pain on palpation at the level of	193
151			or the femoral neck.		origin of the adductor muscles. In addition,	194
152		(II)) Mainly the childhood avulsion fractures		an anamnestic index of extreme impor-	195
153			involving the anterior inferior iliac spine		tance is a history of failure of conservative	196
154			(AIIS), the anterior superior iliac spine		treatment.	197
155			(ASIS) and the apophyseal nucleus of		bic symphysis-related causes	198
156			the ischial tuberosity (ANIT).		Osteitis pubis	199
157		(III)) The iliac crest contusion or hip pointers		Symphysis instability ^(I)	200
158			are the result of direct trauma at the level		Symphysis degenerative arthropathy	201
159			of the iliac crest which causes the forma-	No		202
160			tion of a periosteal haematoma. Such a	(I)	the radiological sign of symphysis insta-	203
161			haematoma can compress the lateral		bility is represented by an asymmetry of	204
162			nerve femoro-cutaneous nerve and cause		pubic branches greater than 3 mm visible	205
163			paresthesia symptoms.		in the Flamingo view X-ray.	206
164	4.	Mu	scle-tendon causes		urological causes ^(I)	207
165		(a)	Rectus abdominis injuries		Nerve entrapment syndrome ^(II)	208
166		(b)	Rectus abdominis tendinopathy		tes:	209
167		(c)	Adductor muscles injuries	(I)	The category "neurological causes"	210
168		(d)	Adductor tendinopathy		should be divided into two further subcat-	211
169		(e)	Rectus abdominis—adductor longus		egories. In the first category, they are the	212
170			common aponeurosis injuries		neurological damage due to overloading	213
171		(f)	Iliopsoas injuries		or overstretching (neurological causes	214
172		(g)	Iliopsoas tendinopathy		category A). In the second category, they	215
173		(h)	· ·		are the neurological damage due to an	216
174			outcomes		acute compression mechanism or tear of	217
175		(i)	Direct muscle injuries		nerve structure (neurological causes cat-	218
176		(j)	Iliopsoas impingement ^(I)		egory B).	219
177		(k)	Snapping internal hip	(II)	Substantially concerning the femoro-	220
178		(1)	Snapping external hip		cutaneous nerve, genitofemoral nerve	221

overuse and/or LSGPS. We can consider in

this category a clinical framework that has

continued for more than 12 weeks. Finally, it

is interesting to underline that a situation of

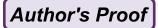
292

293

294

295

G.N. Bisciotti and P. Volpi (genital branch), ilioinguinal nerve, ilio-**Table 1.1** The most likely causes of GPS (63) grouped 222 t1.1 into 11 different nosological categories t1 2 hypogastric nerve, femoral nerve and 223 Number of obturator nerve. t1 3 224 Categories pathology t1.4 7. Developmental causes 225 14 Articular causes t1.5 (a) Apophysitis^(I) 226 3 Visceral causes t1.6 (b) Growth plate at pubic level(II) 227 Bone causes t1 7 228 Notes: Muscle-tendon causes 14 t1 8 (I) Substantially concerning the AIIS and 229 3 Pubic symphysis-related causes t1.9 the ASIS. 230 Neurological causes 1 t1.10 (II) Below the age of 20 years is common to 231 Developmental causes 2 t1 11 observe anteromedial foci of endochondral 232 Genitourinary disease-related causes 15 t1 12 ossification centres. These findings become 233 (inflammatory and not) t1 13 234 particularly evident in arthro-IMR [18]. Neoplastic causes 3 t1 14 8. Genitourinary disease-related Infectious causes t1.15 235 (inflammatory and not) Systemic causes 2 t1.16 236 11 **Total** t1.17 (a) Prostatitis 237 (b) Epididymitis 238 (c) Funiculitis 239 (d) Orchitis Into the last part of the first document, the **240**4 268 (e) Varicocele consensus approved a further subdivision of the 269 241 (f) Hydrocele GPS in three main categories, based both on the 242 270 (g) Urethritis aetiopathogenesis and the timing of onset/disap-271 243 (h) Other infections of the urinary tract pearance of the clinical framework: 244 272 (i) Cystitis 245 (i) Ovarian cysts 1. The GPS of traumatic origin, in which the 273 246 (k) Endometriosis onset of pain was due to a precise traumatic 274 247 (1) Ectopic pregnancy event and this hypothesis is supported by the 248 275 (m) Round ligament entrapment anamnestic investigation, by clinical exami-276 249 (n) Testicular/ovarian torsion nation and imaging. 250 277 2. The GPS due to functional overload, charac-(o) Ureteral lithiasis 251 278 252 9. Neoplastic causes terized by insidious and progressive onset, in 279 (a) Testicular carcinoma which the patient has no memory of trauma or 253 280 (b) Osteoid osteoma a situation to which is attributed with certainty 254 281 (c) Other carcinomas the onset of pain symptoms. 255 282 10. Infectious causes 3. The long-standing GPS (LSGPS) or chronic 256 283 (a) Osteomyelitis GPS, in which the cohort of symptoms com-257 284 258 (b) Septic arthritis plained by the patient continues for a long 285 11. Systemic causes period and is recalcitrant to any conservative 286 259 (a) Inguinal lymphadenopathy therapy. It's important to underline the fact 260 287 AU5 (b) Rheumatic diseases that both the functional overload GPS and 288 261 the traumatic origin GPS may hesitate in a 289 After a deep examination and discussion con-LSGPS. Similarly, a traumatic GPS can 262 290 cerning the literature, we propose to subdivide occur in a previous framework of GPS by 291 263


the most common and probable diseases that can cause GPS in 11 different nosological categories including 63 possible different clinical frameworks (Table 1.1).

264

265

266

267

1 Classification and Differential Analysis of Groin Pain Syndrome

LSGPS is typically most commonly encountered in an amateur athlete rather than in a professional athlete. This can be reasonably explained by the fact that an amateur athlete does not have the same access opportunities to a professional athlete to have a suitable therapeutic procedure, either conservative or surgical.

Therefore, a correct formulation of the diagnosis, corresponding to the concepts stated above, should respect the following formulation: "traumatic GPS caused by..." or "overuse GPS caused by...".

Finally, we underline the concept that, given the anatomical complexity of the pubic region, especially the GPS due to functional overload and the LSGPS can often be caused by the association of more diseases. In the case of a type of GPS caused by the association of more diseases, the diagnosis formulation will change in "traumatic or overuse GPS, or LSGPS caused by the association of ...".

1.2.2 Summary of the Second Document: Clinical Semeiotics Document Consensus

Before describing the second document concerning the semiotics, we would like to recall briefly the GPS cluster of signs and symptoms.

It is estimated that a percentage between 5 and 18% of athletes ask medical attention caused by an activity-restricting GPS [10, 19–21]. Within the same sport played, males had greater GFS incidence than females with a RR equal to 2.45 [5].

In the patient affected by GPS, the symptoms are bilateral in 12% of the cases; it involves the adductor region in 40% of the cases and the perineal region in 6% of the cases: The symptom usually begins unilateral and becomes with the progress of time bilateral [20–26]. The pain onset occurs insidiously in 2/3 of patients and acutely in the remaining 1/3, a certain number of patients refers an acute event after a clinical

framework of GPS or LSGPS was already present [20, 22, 26-29]. The clinical framework is characterized by subjective and objective symptoms. Subjective symptoms are mainly represented by pain and functional deficits [30, 31]. From an objective point of view, the patient may complain pain on palpation, during countered muscle contraction and during passive and active stretching. The clinical examination must therefore be based on a series of tests focused on muscle contractions (isometric, concentric and eccentric), on the active and passive stretching manoeuvres [32-36] and on the palpation of some specific anatomical areas [14, 37–40]. Thus, basing both on the examination of the literature and on expert opinion of the specialists present was approved a second document concerning the clinical examination. The clinical exams approved and recommended during the consensus were categorized in four categories as follows.

1.2.2.1 First Category: Specific Test for Abductor Muscles

- Palpation of the pubic branch at common rectus abdominis/adductor longus common aponeurosis
- 2. Isometric squeeze test with proximal resistance (at knee level)
- 3. Isometric squeeze test with distal resistance (at ankles level)
- 4. Isometric squeeze test with distal resistance and apart legs
- 5. Isometric squeeze with flexed leg and proximal resistance
- 6. Isometric squeeze test in monopodalic execution with the use of a dynamometer⁽¹⁾

Note:

(I) Optional test but in any case strongly recommended especially in the case of unilateral pain symptomatology.

1.2.2.2 Second Category: Specific Test for Abdominal Muscles

Palpation of the pubic branch at common rectus abdominis/adductor longus common aponeurosis

384	2. Rectus abdominis eccentric test	literature [11, 42-58] and on expert opinion of	426
385	3. Sit-up pain test	the specialists present was approved a second	427
386	4. Obliquus abdominis eccentric test	document concerning the imaging assessment which is composed by the following routine	428 429
387	1.2.2.3 Third Category: Specific Test	examinations:	430
388	for the Hip Joint		
389	1. Hip joint intra- and extra-rotation measurement	1. X-ray examination	431
390	2. Flexion abduction external rotation (FABER)	The radiography routinely discussed and	432
391	test	approved includes the following exams:	433
392	3. Dynamic internal rotatory impingement test	(a) Anterior posterior view in upright posi-	434
393	(DIRIT)	tion (AP1)	435
394	4. Dynamic external rotatory impingement test	(b) Anterior posterior view in upright position	436
395	(DEXRIT)	and alternately on one foot (Flamingo	437
396	5. Posterior rim impingement test	view) (AP2)	438
397	6. Lateral rim impingement test	(c) Dunn view (D)	439
398	1.2.2.4 Fourth Category Clinical	From the radiographic assessment, it is recom-	440
399	Evaluation of Inguinal Diseases	mended to obtain the following information:	441
400	Palpation and clinical evaluation of the following	(a) Presence of cross sign (AP1)	442
401	anatomical structures:	(b) Enlargement and /or erosion and/or scle-	443
		rosis of the symphysis (AP1)	444
402	1. Tuberculum pubis	(c) Symphysis asymmetry greater than 3 mm	445
403	2. Crista pubis	(AP2)	446
404	3. Linea pectinea	(d) Calculation of alfa angle (D)	447
405	4. Superior ramus pubis		
406	5. Anulus inguinalis superficialis	2. US examination	448
407	6. Pilastrum infero-lateralis	The US examination must provide the fol-	449
408	7. Pilastrum supero-medialis	lowing assessments:	450
		(a) Assessment of the muscle-tendon unit of	451
409	Furthermore, as part of the second consensus	the abdomen and adductor muscles	452
410	document, it has approved the use, during the med-	(b) Dynamic assessment for the inguinal	453
411	ical history process, of the HAGOS patient-	canal structures	454
412	reported outcome measures in its validated Italian	(c) Assessment of internal organs	455
413	form [41].	(d) Assessment of the urinary tract and of	456
		the external genitalia	457
414	1.2.3 Summary of the Second	Finally, during the execution of the US examina-	458
415	Document: Imaging	tion, the contemporary presence of the radiolo-	459
416	Document Consensus	gist and the general surgeon is strongly	460
		suggested.	461
417	The third document discussed and approved dur-		
418	ing the consensus involved the imaging exams.	3. MRI evaluation	462
419	They were considered the protocols regarding the	Concerning the MRI evaluation, the use of	463
420	conventional radiology (X-ray), ultrasound	a device of at least 1.5 T and a no-contrast	464
421	examination (US) and magnetic resonance imag-	protocol is recommended. The acquisition	465
422	ing (MRI). It was not made no division between	plans recommended are:	466
423	first and second level exams, because it was con-	(a) Coronal	467
424	sidered that each exam has specific peculiarities.	(b) Sagittal	468
425	Therefore, basing both on the examination of the	(c) Axial	469

Author's Proof

1 Classification and Differential Analysis of Groin Pain Syndrome

sagittal STIR and axial oblique PD FS.

515

470	(d) Axial oblique	Rectus abdominis muscle-tendon injury to assess	516
471	(e) Coronal oblique	into the axial oblique sequences PD FS and T2	517
472	(f) Sagittal oblique	FS, as well in coronal STIR	518
		Growth plate at pubic symphysis level to estimate	519
473	The acquisition sequences recommended are:	in axial T1 sequences.	520
474	(a) T1	-	
475	(b) T2 and T2 fat saturated (T2 FS)	Furthermore, it was remembered the ana-	521
476	(c) STIR	tomical importance of the pre-aponeurotic	522
477	(d) Proton density fat saturation (PD FS)	fibrocartilaginous complex (PAFC). The PAFC	523
	•	is formed by the interconnection of the tendons	524
478	Furthermore, into the third document, the con-	of the adductor muscles and rectus femoris	525
479	sensus suggested the radiological findings of	muscle and is included and integrated with the	526
480	major interest:	para-symphysarius ligaments and with the	527 AU
	·	inguinal canal structures. Moreover, it is impor-	528
481	The presence of bone marrow oedema (BMO)	tant to consider that the PAFC is in anatomical	529
482	at pubis symphysis level. The presence of	continuity with the symphysis central disc [59].	530
483	BMO must be identified into the sequences	This complex anatomical structure represents a	531
484	coronal STIR, coronal T1 and axial oblique	real anchoring central point and is therefore	532
485	T2 FS and PD FS. Furthermore, BMO must	essentially formed by the interconnection of the	533
486	also be classified in I°, II° or III° in rela-	fibres of the adductor muscles, the rectus	534
487	tionship of its extension measured into the	abdominis, the external and internal oblique	535
488	PD FS or T2 FS axial oblique plan	muscle, the inguinal ligament, the anterior	536
489	sequences.	pubic ligament, the arcuate ligament and the	537
490	Fatty infiltration within the BMO around the joint	fibrocartilage symphysary disc. The acceptance	538
491	symphysis to verify into the coronal STIR,	of this anatomical concept presupposes two	539
492	coronal T1 and axial oblique T2 and PD FS	fundamental points: the first one is represented	540
493	sequences.	by the fact that the verification of the anatomi-	541
494	Symphysis sclerosis to asses in coronal T1 and	cal integrity PAFC is a central point of imaging	542
495	axial oblique T1 images.	exam and plays a crucial role in the formulation	543
496	High signal intensity para-symphysary line to	of the diagnosis, while the second point is the	544
497	verify in coronal STIR, axial oblique PD FS	necessity to consider the "anatomical continu-	545
498	and sagittal STIR sequences.	ity" of the pubic symphysis, both of its superfi-	546
499	Secondary inferior and/or superior cleft sign to	cial and deep anatomical structures and its	547
500	assess in coronal STIR, axial oblique PD FS	functional continuity.	548
501	and sagittal STIR sequences.		
502	Subchondral cysts/irregularities of the articular	Conclusions	549
503	surface to verify in coronal STIR and axial	From the first GPS Italian consensus, some	550
504	oblique images.	important points of discussion and reflection	551
505	Symphysis central disc protrusion to estimate in	that we can summarize as follows emerged:	552
506	coronal T1 and axial oblique T1 sequences.	that we can summarize as follows emerged.	332
507	Adductor longus tendinopathy to assess into the	The controversy as regards the GPS diagnos-	553
508	axial oblique sequences PD FS, T2 FS and T1,	tic taxonomy can only be solved through	554
509	as well as in coronal T1 sequences.	the adoption of a common language, which	555
510	Adductor longus muscle-tendon injury to	satisfies the principles of clarity, fairness	556
511	evaluate into the axial oblique sequences	and sharability.	557
512	PD FS and T2 FS, as well as coronal STIR	The adoption of a diagnostic pathway both from	558
513	images.	clinical point of view that concerning the	559
514	Rectus abdominis tendinopathy to consider in	imaging is a first step towards harmonizing	560

and

rationalizing

the

approach

561

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

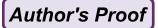
610

611

612

613

GPS. Obviously, such "guided" pathway does not limit the clinician professional skill, but rather it is a guide that would facilitate the formulation of definitive diagnosis, enabling this latter to be based on well-defined clinical diagnostic steps. Furthermore, the use of HAGOS questionnaire provides us the ability to objectively quantify the therapeutic effectiveness of the proposed procedures.


A standardized MRI protocol would facilitate the comparison of data from different study groups and substantially would favour the logical-deductive process that is the basis of the diagnostic path. In any case, it would require further and more detailed studies to clarify the true significance of some radiological findings that we can observe in a GPS framework.

Finally, the small number of female subjects observed in the studies present into the literature could theoretically be a limitation in the applicability of the data described above in a female population.

References

- 1. Bouvard M, Dorochenko P, Lanusse P, Duraffour H. La pubalgie du sportif—stratégie thérapeutique. J Traumatol Sport. 2004;21:146-63.
- 2. Ekberg O, Persson NH, Abrahamsson PA, et al. Longstanding groin pain in athletes: a multidisciplinary approach. Sports Med. 1988;6:56-61.
- 3. Weir A. From disruption to consensus: the thousand mile journey. Br J Sports Med. 2014;48:1075-7.
- 4. Serner A, van Eijck CH, Beumer BR, Hölmich P, Weir A, de Vos RJ. Study quality on groin injury management remains low: a systematic review on treatment of groin pain in athletes. Br J Sports Med. 2015;49(12):813.
- 5. Weir A, Brukner P, Delahunt E, Ekstrand J, Griffin D, Khan KM, Lovell G, Meyers WC, Muschaweck U, Orchard J, Paajanen H, Philippon M, Reboul G, Robinson P, Schache AG, Schilders E, Serner A, Silvers H, Thorborg K, Tyler T, Verrall G, de Vos RJ, Vuckovic Z, Hölmich P. Doha agreement meeting on terminology and definitions in groin pain in athletes. Br J Sports Med. 2015;49(12):768-74.
- 6. Vidalin H, Neouze G, Petit J, Brunet-Guedi E. Prise en charge chirurgicale des pubalgies du sportif. J Traumatol Sport. 2004;21:166-37.
- 7. Bisciotti GN, Eirale C, Vuckovic Z, Le Picard P, D'Hooge P, Chalabi H. La pubalgia dell'atleta: una revisione della letteratura. Med Sport. 2013;66(1):119–33.
- 8. Bisciotti GN, Auci A, Di Marzo F, Quaglia R, Volpi P. Groin pain syndrome: an association of different

- pathologies and a case presentation. Muscles Ligaments Tendons J. 2015;5(3):214-22.
- 9. Le Blanc KE, Le Blanc KA. Groin pain in athletes. Hernia. 2003;7:68–71.
- 10. Hölmich P. Long-standing groin pain in sportspeople falls into three primary patterns, a "clinical entity" approach: a prospective study of 207 patients. Br J Sports Med. 2007;41(4):247-52. discussion 252
- 11. Omar IM, Zoga AC, Kavanagh EC, Koulouris G, Bergin D, Gopez AG, Morrison WB, Meyers WC. Athletic pubalgia and "sports hernia": optimal MR imaging technique and findings. Radiographics. 2008;28(5):1415-38.
- 12. Jaap J. Longstanding adduction-related groin pain in athletes. Oisterwijk: Uitgeverij BOXpress; 2010.
- 13. Brophy RH, Prather H. Differential diagnosis of groin pain in athletes. In: Diduch DR, Brunt LM, editors. Sport hernia and athletic pubalgia. Diagnosis and treatment. London: Springer; 2014. p. 23-30.
- 14. Gilmore CJ, Diduch DR, Handley MV, Hanks JB. Sports hernia—History and physical examination: making the diagnosis with confidence. In: Diduch DR, Brunt LM, editors. Sport hernia and athletic pubalgia. Diagnosis and treatment. London: Springer; 2014. p. 23-30.
- 15. Lyons M, Brunt M. Sport hernia anatomy. What is a sport hernia? In: Diduch DR, Brunt LM, editors. Sport hernia and athletic pubalgia. Diagnosis and treatment. London: Springer; 2014. p. 1–11.
- Sheen AJ, Stephenson BM, Lloyd DM, Robinson P, Fevre D, Paajanen H, de Beaux A, Kingsnorth A, Gilmore OJ, Bennett D, Maclennan I, O'Dwyer P, Sanders D, Kurzer M. Treatment of the sportsman's groin: British Hernia Society's 2014 position statement based on the Manchester Consensus Conference. Br J Sports Med. 2014;48(14):1079–87.
- 17. Sheen AJ, Jamdar S, Bhatti W. Calling for 'inguinal disruption' to be the term of choice for disorders of the inguinal ring: connecting Manchester and Doha. Br J Sports Med. 2015; doi:10.1136/bjsports-2015-095341. pii: bjsports-2015-095341 [Epub ahead of print].
- 18. Koulouris G. Imaging review of groin pain in elite athletes: an anatomic approach to imaging findings. AJR Am J Roentgenol. 2008;191:962-72.
- 19. Syme G, Wilson J, Mackenzie K, Macleod D. Groin pain in athletes. Lancet. 1999;353:1444.
- 20. Moeller JL. Sportsman's hernia. Curr Sports Med Rep. 2007;6:111–4.
- 21. Kachingwe AF, Grech S. Proposed algorithm for the management of athletes with athletic pubalgia (sports hernia): a case series. J Orthop Sports Phys Ther. 2008;38(12):768-81.
- 22. Gilmore J. Groin pain in the soccer athlete: fact, fiction and treatment. Clin Sports Med. 1998;17:787–93.
- 23. Meyers WC, Foley DP, Garrett WE, Lohnes JH, Mandlebaum BR. Management of severe lower abdominal or inguinal pain in high-performance athletes. PAIN (Performing Athletes with Abdominal or Inguinal Neuromuscular Pain Study Group). Am J Sports Med. 2000;28:2-8.
- 24. Ahumada LA, Ashruf S, Espinosa-de-losMonteros A, et al. Athletic pubalgia: definition and surgical treatment. Ann Plast Surg. 2005;55:393-6.

679

680

681

682

683

684

685

686

687

688

693

694

695

696

697

698

699

700

701

702

705

706

707

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

1 Classification and Differential Analysis of Groin Pain Syndrome

- 25. Diaco JF, Diaco DS, Lockhart L. Sports hernia. OperTech Sports Med. 2005;13:68–70.
 - Van Veen RN, de Baat P, Heijboer MP, et al. Successful endoscopic treatment of chronic groin pain in athletes. Surg Endosc. 2007;21:189–93.
 - Lynch SA, Renstrom PA. Groin injuries in sport: treatment strategies. Sports Med. 1999;28:137144.
 - 28. Meyers WC, Lanfranco A, Castellanos A. Surgical management of chronic lower abdominal and groin pain in high-performance athletes. Curr Sports Med Rep. 2002;1:301–5.
 - Swan Jr KG, Wolcott M. The athletic hernia: a systematic review. Clin Orthop Relat Res. 2007;455:78–87.
- 30. Garvey JF, Read JW, Turner A. Sportsman hernia:
 what can we do? Hernia. 2010;14(1):17–25.
- 31. Hureibi KA, McLatchie GR. Groin pain in athletes.Scott Med J. 2010;55(2):8–11.
 - Hölmich P. Groin pain in football players. A systematic diagnostic approach. ASPETAR Sport Med J. 2013;2:192–6.
 - Hölmich P. Groin injuries in athletes—development of clinical entities, treatment, and prevention. Dan Med J. 2015;62(12):B5184.
 - 34. Brown RA, Mascia A, Kinnear DG, Lacroix V, Feldman L, Mulder DS. An 18-year review of sports groin injuries in the elite hockey player: clinical presentation, new diagnostic imaging, treatment, and results. Clin J Sport Med. 2008;18(3):221–6.
- 35. Campanelli G. Pubic inguinal pain syndrome: the socalled sports hernia. Hernia. 2010;14(1):1–4.
 - Unverzagt CA, Schuemann T, Mathisen J. Differential diagnosis of a sports hernia in a high-school athlete.
 J Orthop Sports Phys Ther. 2008;38(2):63–70.
- 708 37. Kehlet H. Groin pain. Ugeskr Laeger. 2010;172(49):3393.
 - Preskitt JT. Sport hernia: the experience of Baylor University Medical Center at Dallas. Proc (Bayl Univ Med Cent). 2011;24(2):89–91.
 - 39. Ross JR, Bedi A, Stone RM, Sibilsky Enselman E, Kelly BT, Larson CM. Characterization of symptomatic hip impingement in butterfly ice hockey goalies. Arthroscopy. 2015;31(4):635–42.
 - Lerebours F, Robertson W, Neri B, Schulz B, Youm T, Limpisvasti O. Prevalence of Cam-Type Morphology in Elite Ice Hockey Players. Am J Sports Med. 2016;44(4):1024–30. pii: 0363546515624671. [Epub ahead of print].
 - Bisciotti GN, Corradini B, Di Marzo F. La validazione del Copenhagen Hip and Groin Outcome Score (HAGOS) in lingua italiana nell'ambito del calcio. J Sport Traumatol. 2014;31(4):126–34.
 - 42. Brennan D, O'Connell MJ, Ryan M, Cunningham P, Taylor D, Cronin C, O'Neill P, Eustace S. Secondary cleft sign as a marker of injury in athletes with groin pain: MR image appearance and interpretation. Radiology. 2005;235(1):162–7.
- 43. Lovell G, Galloway H, Hopkins W, Harvey A. Osteitis
 pubis and assessment of bone marrow edema at the
 pubic symphysis with MRI in an elite junior male soccer squad. Clin J Sport Med. 2006;16(2):117–22.
- 44. Cunningham PM, Brennan D, O'Connell M,
 MacMahon P, O'Neill P, Eustace S. Patterns of bone
 and soft-tissue injury at the symphysis pubis in soccer

players: observations at MRI. AJR Am J Roentgenol. 2007;188(3):W291-6.

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793


794

795

796

797

- 45. Zajick DC, Zoga AC, Omar IM, Meyers WC. Spectrum of MRI findings in clinical athletic pubalgia. Semin Musculoskelet Radiol. 2008;12(1):3–12.
- 46. Zoga AC, Kavanagh EC, Omar IM, Morrison WB, Koulouris G, Lopez H, Chaabra A, Domesek J, Meyers WC. Athletic pubalgia and the "sports hernia": MR imaging findings. Radiology. 2008;247(3): 797–807.
- Zoga AC, Mullens FE, Meyers WC. The spectrum of MR imaging in athletic pubalgia. Radiol Clin North Am. 2010;48(6):1179–97.
- 48. Balconi G. US in pubalgia. J Ultrasound. 2011;14:157–66.
- 49. Weir A, de Vos RJ, Moen M, Hölmich P, Tol JL. Prevalence of radiological signs of femoroacetabular impingement in patients presenting with long-standing adductor-related groin pain. Br J Sports Med. 2011;45(1):6–9.
- Nepple JJ, Brophy RH, Matava MJ, Wright RW, Clohisy JC. Radiographic findings of femoroacetabular impingement in National Football League Combine athletes undergoing radiographs for previous hip or groin pain. Arthroscopy. 2012;28(10): 1396–403.
- 51. Branci S, Thorborg K, Nielsen MB, Hölmich P. Radiological findings in symphyseal and adductor-related groin pain in athletes: a critical review of the literature. Br J Sports Med. 2013;47(10):611–9.
- Powell JR., Nicholas CM., Viswanathan S.Anatomical and pictorial review of MRI findings in patients with athletica pubalgia—a trainees guide. EPOS™. 2013;C-1947:1–23.
- Economopoulos KJ, Milewski MD, Hanks JB, Hart JM, Diduch DR. Radiographic evidence of femoroacetabular impingement in athletes with athletic pubalgia. Sports Health. 2014;6(2):171–7.
- Branci S, Thorborg K, Bech BH, Boesen M, Nielsen MB, Hölmich P. MRI findings in soccer players with long-standing adductor-related groin pain and asymptomatic controls. Br J Sports Med. 2015;49(10): 681–91.
- 55. Lee RK, Griffith JF, Ng WH. High accuracy of ultrasound in diagnosing the presence and type of groin hernia. J Clin Ultrasound. 2015;43(9):538–47.
- Miller J, Cho J, Michael MJ, Saouaf R, Towfigh S. Role of imaging in the diagnosis of occult hernias. JAMA Surg. 2014;149(10):1077–80.
- 57. Robinson P, Grainger AJ, Hensor EM, Batt ME, O'Connor PJ. Do MRI and ultrasound of the anterior pelvis correlate with, or predict, young football players' clinical findings? A 4-year prospective study of elite academy soccer players. Br J Sports Med. 2015;49(3):176–82.
- Morley N, Grant T, Blount K, Omar I. Sonographic evaluation of athletic pubalgia. Skeletal Radiol. 2016 45(5):689-699. [Epub ahead of print].
- MacMahon PJ, Hogan BA, Shelly MJ, Eustace SJ, Kavanagh EC. Imaging of groin pain. Magn Reson Imaging Clin N Am. 2009;17(4):655–66.

Author Queries

Chapter No.: 1 0003060388

Queries	Details Required	Author's Response
AU1	Please check and confirm if the affiliations are presented correctly.	
AU2	Please check the hierarchy of the section headings and confirm if correct.	
AU3	Please check and confirm if the sentence "It's important to underline the four" is fine as edited.	
AU4	Please check if edit to sentence starting "Into the last part" is okay.	
AU5	Please check and confirm if "It's important to underline the fact" is fine as edited.	
AU6	Please check if "symphysarius" should be changed to "symphysis".	C.